Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 22(16): 3204-3208, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563260

RESUMEN

An efficient palladium-catalyzed [2 + 2 + 1] annulation of 3-iodochromones, bridged olefins, and iodomethane is described, affording a range of chromone-containing polycyclic compounds. Additionally, the corresponding deuterated products were smoothly obtained with iodomethane-d3 instead of iodomethane. Moreover, the synthetic utility of this method is further substantiated by gram scale preparation and application to late-stage modification of estrone.

2.
Mol Biol Rep ; 51(1): 365, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409611

RESUMEN

A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT‒PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.


Asunto(s)
MicroARNs , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/metabolismo , Vasos Coronarios/metabolismo , Estudio de Asociación del Genoma Completo , Movimiento Celular , Lipoproteínas LDL/farmacología , Células Cultivadas , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , MicroARNs/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Moléculas de Adhesión Celular/genética
3.
Environ Sci Technol ; 57(39): 14558-14568, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37728882

RESUMEN

Due to the extremely high bond energy of N≡N (∼941 kJ/mol), the traditional Haber-Bosch process of ammonia synthesis is known as an energy-intensive and high CO2-emission industry. In this paper, a cascade N2 reduction process with dielectric barrier discharge (DBD) plasma oxidation and electrocatalytic reduction as an alternative route is first proposed. N2 is oxidized to be reactive nitrogen species (RNS) by nonthermal plasma, which would then be absorbed by KOH solution and electroreduced to NH4+. It is found that the production of NOx is a function of discharge length, discharge power, and gas flow rate. Afterward, the cobalt catalyst is used in the process of electrocatalytic reduction of ammonia, which shows high selectivity (Faradic efficiency (FE) above 90%) and high yield of ammonia (45.45 mg/h). Finally, the cascade plasma oxidation and electrocatalytic reduction for ammonia synthesis is performed. Also, the performance of the reaction system is evaluated. It is worth mentioning that a stable and sustainable ammonia production efficiency of 16.21 mg/h is achieved, and 22.16% of NOx obtained by air activation is converted into NH4+. This work provides a demonstration for further industrial application of ammonia production with DBD plasma oxidation and electrocatalytic reduction techniques.


Asunto(s)
Amoníaco , Plasma , Oxidación-Reducción , Aire , Óxido Nítrico
4.
Mol Immunol ; 160: 67-79, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385102

RESUMEN

Bronchopulmonary dysplasia (BPD) causes high morbidity and mortality in infants, but no effective preventive or therapeutic agents have been developed to combat BPD. In this study, we assessed the expression of MALAT1 and ALOX5 in peripheral blood mononuclear cells from BPD neonates, hyperoxia-induced rat models and lung epithelial cell lines. Interestingly, we found upregulated expression of MALAT1 and ALOX5 in the experimental groups, along with upregulated expression of proinflammatory cytokines. According to bioinformatics prediction, MALAT1 and ALOX5 simultaneously bind to miR-188-3p, which was downregulated in the experimental groups above. Silencing MALAT1 or ALOX5 and overexpressing miR-188-3p inhibited apoptosis and promoted the proliferation of hyperoxia-treated A549 cells. Suppressing MALAT1 or overexpressing miR-188-3p increased the expression levels of miR-188-3p but decreased the expression levels of ALOX5. Moreover, RNA immunoprecipitation (RIP) and luciferase assays showed that MALAT1 directly targeted miR-188-3p to regulate ALOX5 expression in BPD neonates. Collectively, our study demonstrates that MALAT1 regulates ALOX5 expression by binding to miR-188-3p, providing novel insights into potential therapeutics for BPD treatment.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , MicroARNs , ARN Largo no Codificante , Animales , Ratas , Araquidonato 5-Lipooxigenasa , Displasia Broncopulmonar/genética , Línea Celular Tumoral , Leucocitos Mononucleares/metabolismo , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
Front Microbiol ; 13: 1064451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532484

RESUMEN

The genus Sanghuangporus is well-known for its edible and medicinal values. In this study, the most comprehensive occurrence records of Sanghuangporus with accurate species identification are subjected to MaxEnt, to model the current geographic distribution and future range shifts under multiple climate change scenarios in China. The current potential distribution model of Sanghuangporus is excellently predicted as indicated by the value of Area Under Receiver Operator Characteristic Curve. The current potential distribution basically corresponds to the known occurrence records of Sanghuangporus, and provides clues to new suitable habitats. The critical environmental variables to the distribution are annual precipitation, host plant, annual mean temperature and elevation. Host plant is not the most critical contribution to the model, but it indeed plays a decisive role in restricting the distribution of Sanghuangporus. This role is further confirmed by the distribution area of the highly suitable habitat increasing by 155.468%, when excluding host plant from environmental variables. For future scenarios, generally the area of highly suitable habitat for Sanghuangporus extremely increases, but the locations do not change a lot. In conclusion, this study provides important ecological information for the utilization and conservation of the edible and medicinal fungus Sanghuangporus.

6.
Opt Express ; 30(4): 5095-5106, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209479

RESUMEN

We theoretically investigate the photoelectron momentum distribution of He atoms by numerically solving the time-dependent Schro¨dinger equation (TDSE) in few-cycle ionization gating, which is synthesized by two linearly polarized laser pulses. When applying the TDSE, we can clearly see the spider-like structures in the photoelectron momentum spectra. We also find that the spider-like structures can be isolated by changing the relative phase. The directionality of the spider-like structure is changed from right-side to left-side and the ring-like interference structure gradually appears in the photoelectron momentum spectra when increasing the relative phase. The interference patterns observed in TDSE are recaptured well by the quantum-trajectory Monte Carlo (QTMC) model. We separate the ionization time window of the tunneling electron by analyzing the ionization rate. With the help of QTMC simulation, we illustrate the change of the interference structure and its directionality in the photoelectron momentum spectra. By changing the relative phase, the forward-backward asymmetry of the momentum distribution of the emitted electrons can also be controlled. Moreover, we find that the relative contribution of the nonrescattering and the rescattering trajectories can be controlled. These properties are beneficial for the application of photoelecron holography in probing atomic and molecular structures and dynamics.

7.
J Cell Mol Med ; 25(10): 4786-4799, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33745232

RESUMEN

Sepsis is a systemic inflammatory response syndrome caused by infection, resulting in organ dysfunction. Sepsis-induced acute kidney injury (AKI) is one of the most common potential complications. Increasing reports have shown that M1 and M2 macrophages both take part in the progress of AKI by influencing the level of inflammatory factors and the cell death, including pyroptosis. However, whether M1 and M2 macrophages regulate AKI by secreting exosome remains unknown. In the present study, we isolated the exosomes from M1 and M2 macrophages and used Western blot and enzyme-linked immunosorbent assay (ELISA) to investigate the effect of M1 and M2 exosomes on cell pyroptosis. miRNA sequencing was used to identify the different miRNA in M1 and M2 exosomes. Luciferase reporter assay was used to verify the target gene of miRNA. We confirmed that exosomes excreted by macrophages regulated cell pyroptosis in vitro by using Western blot and ELISA. miRNA sequencing revealed the differentially expressed level of miRNAs in M1 and M2 exosomes, among which miR-93-5p was involved in the regulation of pyroptosis. By using bioinformatics predictions and luciferase reporter assay, we found that thioredoxin-interacting protein (TXNIP) was a direct target of miR-93-5p. Further in vitro and in vivo experiments indicated that exosomal miR-93-5p regulated the TXNIP directly to influence the pyroptosis in renal epithelial cells, which explained the functional difference between different phenotypes of macrophages. This study might provide new targets for the treatment of sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda/patología , Exosomas/patología , Macrófagos/patología , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Sepsis/complicaciones , Tiorredoxinas/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Exosomas/genética , Exosomas/metabolismo , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Tiorredoxinas/genética
8.
Front Cell Dev Biol ; 8: 585541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195232

RESUMEN

Circular RNA (circRNA) has been increasingly proven as a new type of promising therapeutic RNA molecule in a variety of human diseases. However, the role of circRNA in bronchopulmonary dysplasia (BPD) has not yet been elucidated. Here, a new circRNA circABCC4 was identified from the Agilent circRNA chip as a differentially expressed circRNA in BPD. The relationship between circABCC4 level and BPD clinicopathological characteristics was analyzed. The function of circABCC4 was evaluated by performing CCK-8 and apoptosis analysis in vitro and BPD model analysis in vivo. RNA immunoprecipitation (RIP), luciferase reporter and rescue experiments were used to elucidate the interaction between circABCC4 and miR-663a. Luciferase reporter assay and rescue experiments were used to elucidate the interaction between PLA2G6 and miR-663a. CircABCC4 and PLA2G6 levels were increased, while miR-663a levels were decreased in the BPD group, compared to the control group. MiR-663a inhibited apoptosis by repressing PLA2G6 expression, while circABCC4 enhanced the apoptosis and inhibited the proliferation of A549 cells by sponging miR-663a and increasing PLA2G6 expression. In conclusion, circABCC4 promotes the evolving of BPD by spongening miR-663a and up-regulating PLA2G6 expression, which makes circABCC4 an ideal molecular target for early diagnosis and intervention of BPD.

9.
J Cell Mol Med ; 24(18): 10478-10492, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32812343

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.


Asunto(s)
Displasia Broncopulmonar/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética , Animales , Apoptosis/genética , Displasia Broncopulmonar/sangre , Línea Celular , Proliferación Celular/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Silenciador del Gen , Humanos , Hiperoxia/genética , Recién Nacido , Leucocitos Mononucleares/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Proteínas de la Membrana/sangre , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/genética , Ratas , Regulación hacia Arriba/genética
10.
Mol Med Rep ; 22(2): 1639-1646, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32467991

RESUMEN

Respiratory syncytial virus (RSV) infection enhances the cell­mediated immune responses of type 2 helper T cells and promotes the progression of allergic inflammation and asthma by producing thymic stromal lymphopoietin (TSLP), especially long isoform TSLP (lfTSLP). However, the role of short isoform TSLP (sfTSLP) in RSV infection remains to be elucidated. The present study was designed to demonstrate the role of both lfTSLP and sfTSLP, as transcription regulators, in RSV infection. The expression of lfTSLP and sfTSLP in RSV­infected Beas­2B cells was analyzed. Activating protein 2 (AP­2)α was overexpressed or knocked down to detect the changes in sfTSLP and lfTSLP expression. Luciferase reporter plasmid and chromatin immunoprecipitation experiments demonstrated that AP­2α bound to the sfTSLP promoter region. LfTSLP and sfTSLP increased while AP­2α decreased in RSV­infected Beas­2B cells. In the Beas­2B cells, AP­2α was found to negatively regulate the activity of the sfTSLP promoter and the mRNA level of sfTSLP. AP­2α also negatively regulated the expression of lfTSLP at both the mRNA and protein levels. The results of the chromatin immunoprecipitation assay indicated that AP­2α bound to the core promoter region of sfTSLP. These results confirmed that the transcription factor AP­2α can repress the expression of lfTSLP and sfTSLP in bronchial epithelial cells in RSV infection.


Asunto(s)
Citocinas/metabolismo , Infecciones por Virus Sincitial Respiratorio/metabolismo , Factor de Transcripción AP-2/metabolismo , Sitios de Unión , Bronquios/inmunología , Bronquios/metabolismo , Línea Celular Transformada , Inmunoprecipitación de Cromatina , Biología Computacional , Citocinas/genética , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Humanos , Luciferasas/química , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Factor de Transcripción AP-2/inmunología
11.
Opt Express ; 26(2): 1645-1654, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29402036

RESUMEN

With the three-dimensional (3D) classical ensemble method, we theoretically investigate the recollision dynamics in strong-field nonsequential double ionization (NSDI) of Ar by counter-rotating two-color circularly polarized laser fields. With the analysis of the NSDI trajectories, we find that not only multiple-recollision but also single-recollision processes occur in the double ionization events. Furthermore, the multiple-recollision and single-recollision processes both undergo the recollision-induced excitation with subsequent ionization (RESI) and recollision-induced ionization (RII). The angle between the momentum and the force of the laser field at the recollision moment can affect the times of the recollision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...